开学啦

乘法的交换律和结合律教学实录与评析

高三应用文2500字
2018-04-14

乘法的交换律和结合律教学实录与评析

教学内容:

九年义务教育苏教版小学数学第七册第81-83页例1、例2和练一练,练习十七第1-4题。教学要求:

1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

3.增强合作意识,激发学生学习数学的兴趣。教学过程:一、猜谜引入

1.猜谜:"弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。"

生:(积极举手,低声喊)纽扣。

师:你为什么会想到是纽扣?

生:因为纽扣扣错了,衣服穿出去就很难看,会让人笑话。

师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。

2.提问:用字母如何表示加法交换律、结合律呢?

适时板书:a+b=b+a

a+b+c=a+(b+c)

3.设问:乘法有没有类似的规律?今天我们就来学习乘法的一些运算定律。(板书课题)[评析:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。]二、猜测验证

1.猜一猜:乘法可能有哪些运算定律?

生1:乘法可能有交换律。

生2:乘法可能有结合律。

生3:……

2.提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

3.学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)[评析:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。]

4.交流。

(1)生1:我们小组经过讨论认为乘法有交换律。比如:3×5二5×3,0×16=16×0等等。两个乘数的位置变了,但它们的积不变。

生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。

生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人?可以列成算式:4×8=32,也可以用8×4=32。这就说明4乘8等于8乘4。因此,乘法和加法一样,也有交换律。

提问:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。

生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如"300×6=6×300。

提问:你能用自己的语言描述一下乘法交换律吗?

生:两个数相乘,交换乘数的位置,积不变。

师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。

师:和你们说的有什么不同?

生1:我们说的是"乘数",但书上说的是"因数"。

生2:书上曾讲过"乘数"又叫"因数",所以我们说交换"乘数"的位置,积不变也是对的。

师:会用字母表示吗?板书:a×b=b×a)。

电脑出示练习十七第2题。

师:请你判别一下,有没有运用乘法交换律?并说明理由。[评析:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。   (2)生4:我们发现乘法也有结合律。如:(3×2)×4=3×(2×4)。

生5:我们也同意这种观点。我们是用应用题来说明的。比如:有6个盒子,每个盒子里有4枝钢笔,每枝钢笔5元,这些钢笔一共值多少元?可以用6×4×5=120(元),还可以用6×(4×5片=120(元),它们的结果一样。

生6:我们是用算式来说明的,如:(34×67)×23=34状67×23)。

提问:同学们能用自己的语言描述一下乘法结合律吗?

生7:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

师:你说得很准确,有什么好方法帮助记忆?

生8:我把加法结合律里的"加"换成"乘",把¨和"换成"积",其余的不变。

生9:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示"先把前两个数相乘",第三个手指靠过来表示"再和第三个数相乘";它等于"先把后两个手指靠在一起,再把第一个手指靠过来"。师:这个记忆方法确实很好,我们大家一起来试一试。师:怎样用字母表示乘法结合律?板书:(a×b)×c=a×(b×c)[评析:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。]

5.比较加法运算定律和乘法运算定律。

师:我们学习了加法、乘法运算定律,你觉得它们有哪些相同、不同的地方?

生1:加法交换律和乘法交换律都要交换位置,不同的是,一个在加法里运用,另一个在乘法里运用。

生2:我觉得加法和乘法的运算定律很相似,只要记住其中一个,就能想出另外一个。[评析:缘起加法交换律,再回到加法交换律,将两者进行比较,让学生感受到知识之间的内在联系。]三、运用

1.回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助?

生:我们验算乘法时就应用了乘法的交换律。

2.基本练习。

3.发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。

8×6×9=(

)[评析:练习的层次鲜明,目标明确; 促进学生构建新的知识网络。]四、小结。(略)